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ABSTRACT 
 

 
Big data is a broad term for datasets so large and complex that the traditional data processing applications are inadequate, so 

i2mapreduce based framework for incremental and iterative computations are done in big data. State level processing 

computation easily retrieve the data and also time consuming. Incremental and iterative mapreduce- mapreduce is the most 

widely used big data processing tool incremental processing is a promising approach to refresh the mining results. Use the same 

computation logic (update function) to process the data many times. The previous iteration’s output is the next iteration’s input, 

Stop when the iterated results converges to a fixed point. This concept using the online banking such as create account, 

withdraw, deposit and to get the details in a effective way. Finally, upload all the data to the cloud using AES algorithm. 

I2mapreduce is one step algorithm and four iterative algorithm with diverse computation characteristics. It is very secure to all 

the data are stored in binary format 0 and 1. 
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I. INTRODUCTION 

 

 
 TODAY huge amount of digital data is being 

accumulated in many important areas, including e-

commerce, social network, finance, health care, 

education, and environment. It has become increasingly 

popular to mine such big data in order to gain insights to 

help business decisions or to provide better personalized, 

higher quality services. In recent years, a large number 

of computing frameworks have been developed for big 

data analysis. Among these frameworks, MapReduce 

(with its open-source implementations, such as Hadoop) 

is the most widely used in production because of its 

simplicity, generality, and maturity. We focus on 

improving MapReduce in this paper. Big data is 

constantly evolving. As new data and updates are being 

collected, the input data of a big datamining algorithm 

will gradually change, and the computed results will 

become stale and obsolete over time. In many situations, 

it is desirable to periodically refresh the mining 

computation in order to keep the mining resultsup-to-

date. For example, the PageRank algorithm computes 

ranking scores of web pages based on the web graph 

structure for supporting web search. However, the web 

graph structure is constantly evolving; Web pages and 

hyper-links are created, deleted, and updated. As the 

underlying web graph evolves, the PageRank ranking 

results gradually become stale, potentially lowering the 

quality of web search. Therefore, it is desirable to 

refresh the PageRank computation regularly. 

Incremental processing is a promising approach to 

refreshing mining results. Given the size of the input big 

data, it is often very expensive to rerun the entire 

computation from scratch. Incremental processing 

exploits the fact that the input data of two subsequent 

computations A and B are similar. Only a very small 

fraction of the input data has changed. The idea is to 

save states in computation A, re-use A’s states in 

computation B, and perform re-computation only for 

states that are affected by the changed input data. In this 

paper, we investigate the realization of this principle in 

the context of the MapReduce computing framework. A 

number of previous studies have followed this principle 

and designed new programming models to support 

incremental processing. Unfortunately, the new 

programming models (BigTable observers in Percolator, 

stateful translate operators in CBP, and timely dataflow 

paradigm in Naiad) are drastically different from 

MapReduce, requiring programmers to completely re-

implement their algorithms. On the other hand, Incoop 

extends MapReduce to support incremental processing. 
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However, it has two main limitations. First, Incoop 

supports only task-level incremental processing. That is, 

it saves and reuses states at the granularity of individual 

Map and Reduce tasks. Each task typically processes a 

large number of key-value pairs (kv-pairs). If Incoop 

detects any data changes in the input of a task, it will 

rerun the entire task. While this approach easily 

leverages existing MapReduce features for state savings, 

it may incur a large amount of redundant computation if 

only a small fraction of kv-pairs have changed in a task. 

Second, Incoop supports only one-step computation, 

while important mining algorithms, such as PageRank, 

require iterative computation. Incoop would treat each 

iteration as a separate MapReduce job. However, a small 

number of input data hangs may gradually propagate to 

affect a large portion of intermediate states after a 

number of iterations, resulting in expensive global re-

computation afterwards.  

 

II. METHODS AND MATERIAL 

 

A. Existing System 

 

Big data is constantly evolving. As new data and updates 

are being collected, the input data of a big data mining 

algorithm will gradually change, and the computed 

results will become stale and obsolete over time. In 

many situations, it is desirable to periodically refresh the 

mining computation in order to keep the mining results 

up-to-date MapReduce-based framework for incremental 

big data processing. MapReduce combines a fine-grain 

incremental engine, a general-purpose iterative model, 

and a set of effective techniques for increment 

MapReduce reschedules the failed Map/Reduce task in 

case task failure is detected. However, the 

interdependency of prime Reduce tasks and prime Map 

tasks in MapReduce requires more complicated fault-

tolerance solution. i2MapReduce checkpoints the prime 

Reduce task’s output state data and MRBGraph file on 

HDFS To the best of our knowledge, the task-level 

coarse-grain incremental processing system, Incoop is 

not publicly available. Therefore, we cannot compare i2 

MapReduce with Incoop. Nevertheless, our statistics 

show that without careful data partition, almost all tasks 

see changes in the experiments, making task-level 

incremental processing less effective.  

 

 

 

Disadvantages of Existing System 

 

 Task-level incremental processing less effective.  

 Plain and iterative MapReduce performing re-

computation.  

 MapReduce re-computation takes long time.  

 Performance is Low in Runtime. 

 

Architecture 

 
 

Fine-Grain Incremental Processing For One-Step 

Computation  

 

We begin by describing the basic idea of fine-grain 

incremental processing in Section 3.1. In Sections 3.2 

and 3.3, we present the main design, including the 

MRBGraph abstraction and the incremental processing 

engine Then in Sections 3.4 and 3.5, we delve into two 

aspects of the design, i.e., the mechanism that preserves 

the fine-grain states, and the handling of a special but 

popular case where the Reduce function performs 

accumulation operations. Basic Idea Consider two 

MapReduce jobs A and A0 performing the same 

computation on input data set D and D0, respectively. 

D0 ¼ DþDD, where DD consists of the inserted and 

deleted input hK1; V1is1. An update can be represented 

as a deletion followed by an insertion. Our goal is to re-

compute only the Map and Reduce function call 

instances that are affected by DD. Incremental 

computation for Map is straightforward. We simply 

invoke the Map function for the inserted or deleted 

hK1;V1 is. Since the other input kv-pairs are not 

changed, their Map computation would remain the same. 

We now have computed the delta intermediate values, 

denoted DM, including inserted and deletedhK2;V2is. 
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To perform incremental Reduce computation, we need 

to save the fine grain states of job A, denoted M, which 

includes hK2 ; fV 2gis. We will re-compute the Reduce 

function for each K2 in DM. The other K2 in M does not 

see any changed intermediate values and therefore 

would generate the same final result. For a K2 in DM, 

typically only a subset of the list of V2 has changed. 

Here, we retrieve the saved hK2; fV2gi from M, and 

apply the inserted and/or deleted values from DM to 

obtain an updated Reduce input. We then re-compute the 

Reduce function on this input to generate the changed 

final resultshK3;V3is. It is easy to see that results 

generated from this incremental computation are 

logically the same as the results from completely re-

computing A0.  

 
 

B. MRB graph Abstraction  

 

We use a MRBGraph (Map Reduce Bipartite Graph) 

abstraction to model the data flow in MapReduce, as 

shown in Fig. 2a. Each vertex in the Map task represents 

an individual Map function call instance on a pair 

ofhK1;V1i. Each vertex in the Reduce task represents an 

individual Reduce function call instance on a group 

ofhK2;f V2gi. An edge from a Map instance to a Reduce 

instance means that the Map instance generates a 

hK2;V2i that is shuffled to become part of the input to 

the Reduce instance. For example, the input of Reduce 

instance a comes from Map instance 0, 2, and 4. 

MRBGraph edges are the fine-grain states M that we 

would like to preserve for incremental processing. An 

edge contains three pieces of information: (i) the source 

Map instance, (ii) the destination Reduce instance (as 

identified by K2), and (iii) the edge value (i.e., V2). 

Since Map input key K1 may not be unique, 

i2MapReduce generates a globally unique Map key MK 

for each Map instance. Therefore, i2MapReduce will 

preserve (K2, MK, and V 2) for each MRBGraph edge. 

 

 

 

 

C. Managing Bank Accounts  

 

It provide two modules for managing a bank account. 

One is intended to be used by the bank, and the other by 

the customer. The approach is to implement a general-

purpose parameterized functor providing all the needed 

operations, then apply it twice to the correct parameters, 

constraining it by the signature corresponding to its final 

user: the bank or the customer.This set of functions 

provide the minimal operations on an account. The 

creation operation takes as arguments the initial balance 

and the maximal overdraft allowed. Excessive 

withdrawals may raise the Bad Operation exception. We 

keep unspecified for now the types of the log keys (type 

tkey) and of the associated data (type tinfo), as well as 

the data structure for storing logs (type t). We assume 

that new informations added with the add function are 

kept in sequence.  

 

D. Upload Big Data to File  

 

Analyzing transactional data is at the core of the data at 

a financial institution’s disposal. Transaction data can 

uncover powerful insights into customer needs, 

preferences and behaviors. However, transaction data 

represents only one type of insight that financial 

institutions possess. Other types of insight that reside 

within an organization include both structured data 

(demographic profiles, product ownership, balances, 

etc.) and unstructured internal data (call center logs, 

channel interactions, correspondence, etc.).In addition to 

internal data sources, banks and credit unions can also 

take advantage of external data. Social media represents 

a largely untapped source of insight that financial 

organizations can use to develop a more holistic view of 

their customers. Financial organizations and their 

executives to improve their customer experience levels 

to differentiate themselves and to stay ahead of 

competitors. This, in turn, will improve acquisition 

results, engagement and cross-sell effectiveness as well 

as customer loyalty and growth. Banks and credit unions 

can achieve this by leveraging existing and historical 

consumer data to target consumers at the individual level 

and foster a more custom and personalized experience.  

 

E. I2mapreduce and Analyzing Iterative 

Computation  

Cloud intelligence applications often perform iterative 

computations (e.g., Online Bank) on constantly 
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changing data sets (e.g., Web graph). While previous 

studies extend MapReduce for efficient iterative 

computations, it is too expensive to perform an entirely 

new large-scale MapReduce iterative job to timely 

accommodate new changes to the underlying data sets. 

In this paper, we propose i2MapReduce to support 

incremental iterative computation. We observe that in 

many cases, the changes impact only a very small 

fraction of the data sets, and the newly iteratively 

converged state is quite close to the previously 

converged state. i2MapReduce exploits this observation 

to save re-computation by starting from the previously 

converged state, and by performing incremental updates 

on the changing data. Our preliminary result is quite 

promising. i2MapReduce sees significant performance 

improvement over re-computing iterative 

jobsMapReduce. 

  

III. RESULTS AND DISCUSSION 
 

General-Purpose Support For Iterative Computation  

 

We first analyze several representative iterative 

algorithms in Section 4.1. Based on this analysis, we 

propose a generalpurpose MapReduce model for 

iterative computation in Section 4.2, and describe how to 

efficiently support this model in Section 4.3.  

 

Analyzing Iterative Computation PageRank.  

 

PageRank is a well-known iterative graph algorithm for 

ranking web pages. It computes a ranking score for each 

vertex in a graph. After initializing all ranking scores, 

the computation performs a MapReduce job per 

iteration, as shown in Algorithm 2. i and j are vertex ids, 

Ni is the set of out-neighbor vertices of i, Ri is i’s 

ranking score that is updated iteratively. ‘|’ means 

concatenation.  

 

All Ri’s are initialized to one2. The Map instance on 

vertex i sends value Ri,j = Ri/|Ni| to all its out-neighbors 

j, where |Ni| is the number of i’s out-neighbors. The 

Reduce instance on vertex j updates Rj by summing the 

Ri,j received from all its in-neighbors i, and applying a 

damping factor d.  Algorithm 2 PageRank in 

MapReduce  

 

Map Phase input: < i, Ni|Ri >  

1: output < i, Ni >  

2: for all j in Ni do  

3: Ri,j = Ri |Ni|  

4: output < j, Ri,j >  

5: end for  

Reduce Phase input: < j, {Ri,j,Nj} >  

6: Rj = dPi Ri,j + (1 − d)  

7: output < j, Nj|Rj >  

 

Kmeans. Kmeans [15] is a commonly used clustering 

algorithm that partitions points into k clusters. We 

denote the ID of a point as pid, and its feature values 

pval. The computation starts with selecting k random 

points as cluster centroids set {cid,cval}. As shown in 

Algorithm 3, in each iteration, the Map instance on a 

point pid assigns the point to the nearest centroid. The 

Reduce instance on a centroid cid updates the centroid 

by averaging the values of all assigned points {pval}.  

 

Algorithm 3 Kmeans in MapReduce 

  

Map Phase input: < pid, pval|{cid,cval} >  

1: cid ← find the nearest centroid of pval in {cid,cval}  

2: output < cid, pval >  

Reduce Phase input: < cid, {pval} >  

3: cval ← compute the average of {pval}  

4: output < cid, cval >  

 

GIM-V. Generalized Iterated Matrix-Vector 

multiplication (GIM-V) [13] is an abstraction of many 

iterative graph mining operations (e.g., PageRank, 

spectral clustering, diameter estimation, connected 

components). These graph mining algorithms can be 

generally represented by operating on an n × n matrix M 

and a vector v of size n. Suppose both the matrix and the 

vector are divided into sub-blocks. Let mi,j denote the 

(i,j)-th block of M and vj denote the jth block of v. The 

computation steps are similar to those of the matrix-

vector multiplication and can be abstracted into three 

operations: (1) mvi,j = combine2(mi,j,vj); (2) v′ i = 

combineAlli({mvi,j}); and (3) vi = assign(vi,v′ i). We 

can compare combine2 to the multiplication between 

mi,j and vj, and compare combineAll to the sum of mvi,j 

for row i. 
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Algorithm 4 shows the MapReduce implementation with 

two jobs for each iteration. The first job assigns vector 

block vj to multiple matrix blocks mi,j (∀i) and performs 

combine2(mi,j,vj) to obtain mvi,j. The second job 

groups the mvi,j and vi on the same i, performs the 

combineAll({mvi,j}) operation, and updates vi using 

assign(vi,v′ i).  The computed PageRank scores will be 

|N| times larger, where |N| is the number of vertices in 

the graph.  

Algorithm 4 GIM-V in MapReduce  

 

Map Phase 1 input: < (i,j),mi,j > or < j,vj >  

1: if kv-pair is < (i,j),mi,j > then  

2: output < (i,j),mi,j >  

3: else if kv-pair is < j,vj > then  

4: for all i blocks in j’s row do  

5: output < (i,j),vj >  

6: end for  

7: end if  

Reduce Phase 1 input: < (i,j),{mi,j,vj} >  

8: mvi,j = combine2(mi,j, vj)  

9: output < i, mvi,j >, < j, vj >  

 

Map Phase 2: output all inputs 

 

 
 

Reduce Phase 2 input: < i,{mvi,j,vi} >  

 

10: v′ i ← combineAll({mvi,j})  

11: vi ← assign(vi, v′ i) 12: output < i, vi >  

 

Supporting Smaller Number of State kv-pairs. In some 

applications, the number of state keys is smaller than n. 

Kmeans is an extreme case with only a single state kv-

pair. In these applications, the total size of the state data 

is typically quite small. Therefore, the backward transfer 

overhead is low. Under such situation, i2MapReduce 

does not apply the above partition functions. Instead, it 

partitions the structure kv-pairs using MapReduce’s 

default approach, while replicating the state data to each 

partition. 

 

 

IV. CONCLUSION 

 
We have described i2MapReduce, a MapReduce-based 

framework for incremental big data processing. i2 MapReduce 

combines a fine-grain incremental engine, a general-purpose 

iterative model, and a set of effective techniques for 

incremental iterative computation. Real-machine experiments 

show that i2 MapReduce can significantly reduce the run time 

for refreshing big data mining results compared to re-

computation on both plain and iterative MapReduce.  

 

V. FUTURE WORK  

 
In Future Besides Incoop several recent studies aim at 

supporting incremental processing for one-step applications. 

Stateful Bulk Processing addresses the need for stateful 

dataflow programs. It provides a groupwise processing 
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operator Translate that takes state as an explicit input to 

support incremental analysis. But it adopts a new 

programming model that is very different from MapReduce. 

In addition, several research studies support incremental 

processing by task-level re-computation, but they require 

users to manipulate the states on their own. In contrast, 

i2MapReduce exploits a fine-grain kv-pair level re-compute 

To support incremental iterative computation, programmers 

have to completely rewrite their Map Reduce programs for 

Naiad. In comparison, we extend the widely used MapReduce 

model for incremental iterative computation. Existing 

MapReduce programs can be slightly changed to run on 

i2MapReduce for incremental processing. 
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